/*
* This file is part of libn3ds
* Copyright (C) 2024 derrek, profi200
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include
#include "arm11/drivers/mcu.h"
#include "arm11/drivers/i2c.h"
#include "debug.h"
#include "arm11/drivers/interrupt.h"
#include "arm11/drivers/gpio.h"
static atomic_bool g_mcuNeedsIrqRead = false;
static u32 g_mcuIrqs = 0;
static struct
{
u16 version; // MCU firmware version ((MCU_REG_VERS_MAJOR - 0x10)<<8 | MCU_REG_VERS_MINOR).
// TODO: Cache IRQ mask?
u8 conType; // Console type (MCU_REG_RAW_STATE[0]).
McuSysModel systemModel; // System model (MCU_REG_RAW_STATE[9]).
u8 earlyButtonsHeld; // Early button state (MCU_REG_RAW_STATE[18]);
} g_mcuRegCache;
static void mcuIrqHandler(UNUSED u32 intSource);
static bool updateRegisterCache(void)
{
// Read major and minor version at once.
u16 version;
if(!MCU_readRegArray(MCU_REG_VERS_MAJOR, &version, sizeof(version))) return false;
g_mcuRegCache.version = __builtin_bswap16(version - 0x10);
u8 tmp[19];
if(!MCU_readRegArray(MCU_REG_RAW_STATE, tmp, sizeof(tmp))) return false;
g_mcuRegCache.conType = tmp[0];
g_mcuRegCache.systemModel = tmp[9];
g_mcuRegCache.earlyButtonsHeld = tmp[18];
return true;
}
void MCU_init(void)
{
static bool mcuDriverInitialized = false;
if(mcuDriverInitialized) return;
mcuDriverInitialized = true;
// Make sure I2C is initialized.
I2C_init();
// Configure GPIO for MCU IRQs.
GPIO_config(GPIO_CTR_MCU_IRQ, GPIO_IRQ_FALLING | GPIO_INPUT);
// TODO: Clear alarm regs here like mcu module? Is this really needed?
// Enable MCU IRQs.
IRQ_registerIsr(IRQ_CTR_MCU, 14, 0, mcuIrqHandler);
// Do first MCU IRQ read to clear all bits.
// Discard IRQs we don't care about.
atomic_store_explicit(&g_mcuNeedsIrqRead, true, memory_order_relaxed);
(void)MCU_getIrqs(~DEFAULT_MCU_IRQ_MASK);
// Set IRQ mask so we only get IRQs we are interested in.
if(!MCU_setIrqMask(DEFAULT_MCU_IRQ_MASK)) panic();
// Initialize register cache.
if(!updateRegisterCache()) panic();
}
/*bool MCU_reboot(void)
{
// TODO: GPIO bitmask 0x40000 handling.
// Enters MCU update mode but since no firmware data
// is incoming it will just reboot.
if(!MCU_writeRegArray(MCU_REG_FW_UPDATE, "jhl", 3)) return false;
// We need to wait 1 second for the MCU to reboot.
TIMER_sleepMs(1000);
// TODO: Some state needs to be restored after a reboot.
return true;
}*/
static void mcuIrqHandler(UNUSED u32 intSource)
{
atomic_store_explicit(&g_mcuNeedsIrqRead, true, memory_order_relaxed);
}
// TODO: Rewrite using events (needs timeout support).
u32 MCU_getIrqs(u32 mask)
{
u32 irqs = g_mcuIrqs;
if(atomic_load_explicit(&g_mcuNeedsIrqRead, memory_order_relaxed))
{
atomic_store_explicit(&g_mcuNeedsIrqRead, false, memory_order_relaxed);
u32 newIrqs;
if(!MCU_readRegArray(MCU_REG_IRQ, &newIrqs, sizeof(newIrqs))) return 0;
irqs |= newIrqs;
}
g_mcuIrqs = irqs & ~mask;
return irqs & mask;
}
// TODO: Rewrite using events (needs timeout support).
u32 MCU_waitIrqs(u32 mask)
{
u32 irqs;
while((irqs = MCU_getIrqs(mask)) == 0u)
{
__wfi();
}
return irqs;
}
u16 MCU_getFirmwareVersion(void)
{
return g_mcuRegCache.version;
}
u8 MCU_getStatus(void)
{
return MCU_readReg(MCU_REG_STAT);
}
bool MCU_setStatus(u8 status)
{
return MCU_writeReg(MCU_REG_STAT, status);
}
u8 MCU_getLcdVcomTop(void)
{
return MCU_readReg(MCU_REG_LCD_VCOM_TOP);
}
bool MCU_setLcdVcomTop(u8 vcom)
{
return MCU_writeReg(MCU_REG_LCD_VCOM_TOP, vcom);
}
u8 MCU_getLcdVcomBot(void)
{
return MCU_readReg(MCU_REG_LCD_VCOM_BOT);
}
bool MCU_setLcdVcomBot(u8 vcom)
{
return MCU_writeReg(MCU_REG_LCD_VCOM_BOT, vcom);
}
u8 MCU_get3dSliderPosition(void)
{
return MCU_readReg(MCU_REG_3D_SLIDER_RAW);
}
u8 MCU_getVolumeSliderPosition(void)
{
return MCU_readReg(MCU_REG_VOL_SLIDER);
}
s8 MCU_getBatteryTemperature(void)
{
return (s8)MCU_readReg(MCU_REG_BATT_TEMP);
}
u8 MCU_getBatteryLevel(void)
{
// The fractional part of the percentage is borderline useless.
// It has varying accuracy and is stuck at 0 near 1%.
return MCU_readReg(MCU_REG_BATT_LEVEL);
}
float MCU_getBatteryVoltage(void)
{
return 0.02f * MCU_readReg(MCU_REG_BATT_VOLT);
}
u16 MCU_getExternalHardwareStatus(void)
{
u16 status;
// Read both status regs at once.
if(!MCU_readRegArray(MCU_REG_EX_HW_STAT2, &status, sizeof(status)))
status = 0;
return __builtin_bswap16(status);
}
u32 MCU_getIrqMask(void)
{
u32 mask;
if(!MCU_readRegArray(MCU_REG_IRQ_MASK, &mask, sizeof(mask)))
mask = 0;
return mask;
}
bool MCU_setIrqMask(u32 mask)
{
return MCU_writeRegArray(MCU_REG_IRQ_MASK, &mask, sizeof(mask));
}
// TODO: Possibly combine power off and reboot?
void MCU_sysPowerOff(void)
{
I2C_writeRegIntSafe(I2C_DEV_CTR_MCU, MCU_REG_SYS_PWR, BIT(0));
}
void MCU_sysReboot(void)
{
I2C_writeRegIntSafe(I2C_DEV_CTR_MCU, MCU_REG_SYS_PWR, BIT(2));
}
bool MCU_setTwlIrq(u8 bits)
{
return MCU_writeReg(MCU_REG_TWL_IRQ, bits);
}
void MCU_setLcdPower(u8 bits)
{
MCU_writeReg(MCU_REG_LCD_PWR, bits);
}
u8 MCU_getPoweroffDelay(void)
{
return MCU_readReg(MCU_REG_PWROFF_DELAY);
}
bool MCU_setPoweroffDelay(u8 delay)
{
return MCU_writeReg(MCU_REG_PWROFF_DELAY, delay);
}
u8 MCU_getRegister0x25(void)
{
return MCU_readReg(MCU_REG_UNK25);
}
bool MCU_setRegister0x25(u8 data)
{
return MCU_writeReg(MCU_REG_UNK25, data);
}
u8 MCU_getRegister0x26(void)
{
return MCU_readReg(MCU_REG_UNK26);
}
bool MCU_setRegister0x26(u8 data)
{
return MCU_writeReg(MCU_REG_UNK26, data);
}
u8 MCU_getVolumeSliderPositionRaw(void)
{
return MCU_readReg(MCU_REG_VOL_SLIDER_RAW);
}
bool MCU_setVolumeSliderPositionRaw(u8 data)
{
return MCU_writeReg(MCU_REG_VOL_SLIDER_RAW, data);
}
u8 MCU_getLedMasterBrightness(void)
{
return MCU_readReg(MCU_REG_LED_BRIGHTNESS);
}
bool MCU_setLedMasterBrightness(u8 brightness)
{
return MCU_writeReg(MCU_REG_LED_BRIGHTNESS, brightness);
}
PwrLedPattern MCU_getPowerLedPattern(void)
{
return MCU_readReg(MCU_REG_PWR_LED);
}
bool MCU_setPowerLedPattern(const PwrLedPattern patt)
{
return MCU_writeReg(MCU_REG_PWR_LED, patt);
}
bool MCU_setLowPowerLedPattern(const u32 patt)
{
u8 tmp[5];
tmp[0] = MCU_getPowerLedPattern();
if(tmp[0] == MCU_PWR_LED_INVALID) return false;
memcpy(&tmp[1], &patt, sizeof(patt));
return MCU_writeRegArray(MCU_REG_PWR_LED, tmp, sizeof(tmp));
}
u8 MCU_getWifiLedState(void)
{
return MCU_readReg(MCU_REG_WIFI_LED);
}
bool MCU_setWifiLedState(u8 state)
{
return MCU_writeReg(MCU_REG_WIFI_LED, state);
}
u8 MCU_getCameraLedState(void)
{
return MCU_readReg(MCU_REG_CAM_LED);
}
bool MCU_setCameraLedState(u8 state)
{
return MCU_writeReg(MCU_REG_CAM_LED, state);
}
u8 MCU_get3dLedState(void)
{
return MCU_readReg(MCU_REG_3D_LED);
}
bool MCU_set3dLedState(u8 state)
{
return MCU_writeReg(MCU_REG_3D_LED, state);
}
bool MCU_setInfoLedPattern(const InfoLedPattern *const patt)
{
return MCU_writeRegArray(MCU_REG_INFO_LED, patt, sizeof(InfoLedPattern));
}
u8 MCU_getInfoLedStatus(void)
{
return MCU_readReg(MCU_REG_INFO_LED_STAT);
}
bool MCU_getRtcTimeDate(RtcTimeDate *timeDate)
{
// Read time and date at once.
return MCU_readRegArray(MCU_REG_RTC_S, timeDate, sizeof(RtcTimeDate));
}
bool MCU_setRtcTimeDate(const RtcTimeDate *timeDate)
{
// Write time and date at once.
return MCU_writeRegArray(MCU_REG_RTC_S, timeDate, sizeof(RtcTimeDate));
}
u8 MCU_getRtcErrorCorrection(void)
{
return MCU_readReg(MCU_REG_RTC_ERR_CORR);
}
bool MCU_setRtcErrorCorrection(u8 correction)
{
return MCU_writeReg(MCU_REG_RTC_ERR_CORR, correction);
}
bool MCU_getAlarmTimeDate(AlarmTimeDate *timeDate)
{
// Read time and date at once.
return MCU_readRegArray(MCU_REG_ALARM_MIN, timeDate, sizeof(AlarmTimeDate));
}
bool MCU_setAlarmTimeDate(const AlarmTimeDate *timeDate)
{
// Write time and date at once.
return MCU_writeRegArray(MCU_REG_ALARM_MIN, timeDate, sizeof(AlarmTimeDate));
}
u16 MCU_getRtcTick(void)
{
u16 tick;
// Read both tick bytes at once.
if(!MCU_readRegArray(MCU_REG_RTC_TICK_LO, &tick, sizeof(tick)))
tick = 0;
return tick;
}
bool MCU_setRegister0x3F(u8 data)
{
return MCU_writeReg(MCU_REG_UNK3F, data);
}
AccCfg MCU_getAccelerometerConfig(void)
{
return MCU_readReg(MCU_REG_ACC_CFG);
}
bool MCU_setAccelerometerConfig(AccCfg cfg)
{
return MCU_writeReg(MCU_REG_ACC_CFG, cfg);
}
u8 MCU_readAccelerometerRegister(u8 reg)
{
if(!MCU_writeReg(MCU_REG_ACC_READ_OFF, reg)) return 0;
MCU_waitIrqs(MCU_IRQ_ACC_RW_DONE);
return MCU_readReg(MCU_REG_ACC_DATA);
}
bool MCU_writeAccelerometerRegister(u8 reg, u8 data)
{
const u16 regData = (u16)data<<8 | reg;
// Write register and data at once.
if(!MCU_writeRegArray(MCU_REG_ACC_WRITE_OFF, ®Data, sizeof(regData))) return false;
MCU_waitIrqs(MCU_IRQ_ACC_RW_DONE); // TODO: Is this needed? mcu module doesn't wait for write.
return true;
}
bool MCU_getAccelerometerSamples(AccData *samples)
{
// Read all X/Y/Z sample bytes at once.
const bool res = MCU_readRegArray(MCU_REG_ACC_X_LO, samples, sizeof(AccData));
// Sample data is in the upper 12 bits.
samples->x >>= 4;
samples->y >>= 4;
samples->z >>= 4;
return res;
}
u32 MCU_getPedometerStepCount(void)
{
u32 steps;
// Read all step count bytes at once.
if(!MCU_readRegArray(MCU_REG_PM_COUNT_LO, &steps, 3))
steps = 0;
return steps & ~0xFF000000u; // Make sure byte 4 is 0.
}
bool MCU_setPedometerStepCount(u32 steps)
{
// Write all step count bytes at once.
return MCU_writeRegArray(MCU_REG_PM_COUNT_LO, &steps, 3);
}
// TODO: Reg 0x4E.
bool MCU_getPedometerHistory(u8 history[6 + 336])
{
// Read all history bytes at once.
const bool res = MCU_readRegArray(MCU_REG_PM_HIST, history, 6 + 336);
// TODO: BCD to decimal for the timestamps.
return res;
}
u8 MCU_getRegister0x50(void)
{
return MCU_readReg(MCU_REG_UNK50);
}
bool MCU_setRegister0x50(u8 data)
{
return MCU_writeReg(MCU_REG_UNK50, data);
}
u8 MCU_getRegister0x51(void)
{
return MCU_readReg(MCU_REG_UNK51);
}
bool MCU_setRegister0x51(u8 data)
{
return MCU_writeReg(MCU_REG_UNK51, data);
}
bool MCU_getVolumeSliderCalibrationPoints(u8 minMax[2])
{
// Read min and max at once.
return MCU_readRegArray(MCU_REG_VOL_SLIDER_MIN, minMax, 2);
}
bool MCU_setVolumeSliderCalibrationPoints(const u8 minMax[2])
{
// Write min and max at once.
return MCU_writeRegArray(MCU_REG_VOL_SLIDER_MIN, minMax, 2);
}
bool MCU_getFreeRamData(u8 off, u8 *out, u8 size)
{
if(!MCU_writeReg(MCU_REG_FREE_RAM_OFF, off)) return false;
return MCU_readRegArray(MCU_REG_FREE_RAM_DATA, out, size);
}
bool MCU_setFreeRamData(u8 off, const u8 *in, u8 size)
{
if(!MCU_writeReg(MCU_REG_FREE_RAM_OFF, off)) return false;
return MCU_writeRegArray(MCU_REG_FREE_RAM_DATA, in, size);
}
u8 MCU_getConsoleType(void)
{
return g_mcuRegCache.conType;
}
McuSysModel MCU_getSystemModel(void)
{
return g_mcuRegCache.systemModel;
}
u8 MCU_getEarlyButtonsHeld(void)
{
return g_mcuRegCache.earlyButtonsHeld;
}
u8 MCU_readReg(McuReg reg)
{
return I2C_read(I2C_DEV_CTR_MCU, reg);
}
bool MCU_writeReg(McuReg reg, u8 data)
{
return I2C_write(I2C_DEV_CTR_MCU, reg, data);
}
bool MCU_readRegArray(McuReg reg, void *out, u32 size)
{
return I2C_readArray(I2C_DEV_CTR_MCU, reg, out, size);
}
bool MCU_writeRegArray(McuReg reg, const void *const in, u32 size)
{
return I2C_writeArray(I2C_DEV_CTR_MCU, reg, in, size);
}