387 lines
12 KiB
C

/*
* This file is part of libn3ds
* Copyright (C) 2024 derrek, profi200
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "types.h"
#include "mem_map.h"
#include "arm11/drivers/i2c.h"
#include "arm11/drivers/cfg11.h"
#include "arm11/console.h"
#include "arm11/fmt.h"
#include "drivers/pxi.h"
#include "ipc_handler.h"
#include "arm11/drivers/interrupt.h"
#include "arm.h"
#include "util.h"
#include "drivers/cache.h"
#include "arm11/drivers/mcu.h"
#include "arm11/drivers/hid.h"
#define LED_RGB8(r, g, b) ((b)<<16 | (g)<<8 | (r))
// We are violating our IPC protocol sending data silently
// but this is ok because for exceptions we have no other choice.
static inline u32 recvRawPxiWord(void)
{
Pxi *const pxi = getPxiRegs();
while(pxi->cnt & PXI_CNT_RECV_EMPTY);
return pxi->recv;
}
static void prepareArm9ForPowerOff(void)
{
Pxi *const pxi = getPxiRegs();
while(pxi->cnt & PXI_CNT_SEND_FULL);
pxi->send = IPC_CMD9_PREPARE_POWER;
pxi->sync_irq = PXI_SYNC_IRQ_IRQ_EN | PXI_SYNC_IRQ_IRQ;
while(recvRawPxiWord() != (IPC_CMD_RESP_FLAG | IPC_CMD9_PREPARE_POWER));
// We don't care about the result.
}
static void recvRawPxiData(void *data, u32 size, const bool isString)
{
u8 *ptr8 = data;
while(size > 0)
{
const u32 blockSize = (size > 4 ? 4 : size);
const u32 tmp = recvRawPxiWord();
for(u32 i = 0; i < blockSize; i++)
{
*ptr8++ = tmp>>(i * 8);
}
// Words are zero padded so this lazy check will work.
if(isString && ((tmp>>24) == 0)) break;
size -= blockSize;
}
}
// Maximum value for frameMs is 500.
// Make sure the last frame is 0%/off otherwise the LED stays on.
// Note: First pattern is skipped by the MCU due to a firmware bug.
static void exceptionInfoLedBlink(const u16 frameMs, const bool smooth, const u32 color, u32 patt)
{
// Fixed point calculation is tested and works perfectly from 0-500 ms.
const u32 frameTime = (4294968u * frameMs)>>23; // 512u * frameMs / 1000.
// frameTime 0 is equal to 256 (wraps around).
// lastRepeat is set to 255 to repeat the last frame forever (plays whole pattern once).
InfoLedPattern p;
p.frameTime = frameTime & 0xFFu;
p.rampTime = (smooth ? (frameTime > 255 ? 255 : frameTime) : 0);
p.lastRepeat = 255;
p.unused = 0;
for(unsigned i = 0; i < 32; i++)
{
const u32 c = ((patt & BIT(0)) == 1 ? color : 0u);
p.r[i] = c;
p.g[i] = c>>8;
p.b[i] = c>>16;
patt >>= 1;
}
// Since we don't know which state the CPU is in
// we have to use the interrupt safe I2C function.
I2C_writeRegArrayIntSafe(I2C_DEV_CTR_MCU, MCU_REG_INFO_LED, &p, sizeof(p));
}
static bool prepareExceptionHandling(const u32 fatalType, const u32 ledPattern)
{
// Disable interrupts. Only required for assert()/panicMsg()/panic().
__cpsid(i);
// Block any attempts to run exception handling more than once.
// This must be a strong atomic to account for multiple cores.
static au32 exceptionLock = 0;
if(atomic_exchange_explicit(&exceptionLock, 1, memory_order_acquire) != 0)
{
while(1) __wfi();
}
// Make the info LED blink for ~2 seconds in case this is a silent exception.
static const u32 fatalColors[3] = {LED_RGB8(0, 128, 0), LED_RGB8(128, 128, 0), LED_RGB8(128, 0, 0)};
exceptionInfoLedBlink(65, false, fatalColors[fatalType], ledPattern);
// Setup frame buffer console for exceptions.
const bool gfxReady = GFX_setupExceptionFrameBuffer();
if(gfxReady) consoleInit(GFX_LCD_BOT, NULL);
return gfxReady;
}
static void printException(const u32 excType, const u32 *const regs, const bool isArm9)
{
// Check CPU mode. Thumb instructions are usually 2 bytes big.
const u32 cpsr = regs[16];
const u32 instSize = ((cpsr & PSR_T) != 0 ? 2 : 4);
// Adjust pc to point at the actual fault instruction.
// On data abort (exception type 2) pc is 2 instructions ahead.
// On other exceptions pc is 1 instruction ahead.
const u32 pc = regs[15];
const u32 realPc = (excType == 2 ? pc - instSize * 2 : pc - instSize);
// Print register dump. Fits exactly on bottom LCD width.
ee_printf("r0: %08" PRIX32 " r4: %08" PRIX32 " r8: %08" PRIX32 " r12: %08" PRIX32
"r1: %08" PRIX32 " r5: %08" PRIX32 " r9: %08" PRIX32 " sp: %08" PRIX32
"r2: %08" PRIX32 " r6: %08" PRIX32 " r10: %08" PRIX32 " lr: %08" PRIX32
"r3: %08" PRIX32 " r7: %08" PRIX32 " r11: %08" PRIX32 " pc: %08" PRIX32,
regs[0], regs[4], regs[8], regs[12],
regs[1], regs[5], regs[9], regs[13],
regs[2], regs[6], regs[10], regs[14],
regs[3], regs[7], regs[11], realPc);
if(!isArm9)
{
// Print remaining regs.
ee_printf("CPSR: %08" PRIX32 " DFSR: %08" PRIX32 " IFSR: %08" PRIX32 "\n"
"FAR: %08" PRIX32 " WFAR: %08" PRIX32 "\n\n",
cpsr, regs[17], regs[18],
regs[19], regs[20]);
// Print stack dump.
const u32 sp = regs[13];
if(sp >= AXI_RAM_BASE && sp < AXI_RAM_BASE + AXI_RAM_SIZE && (sp % 4) == 0) // TODO: Allow any valid memory region.
{
u32 stackWords = (AXI_RAM_BASE + AXI_RAM_SIZE - sp) / 4;
stackWords = (stackWords > 90 ? 90 : stackWords);
for(u32 i = 0; i < stackWords; i++)
{
ee_printf("%08" PRIX32, ((u32*)sp)[i]);
if((i % 6) < 5) ee_printf(" ");
}
}
}
else
{
// Print CPSR.
ee_printf("CPSR: %08" PRIX32 "\n\n", cpsr);
// Print stack dump.
u32 stackWords = recvRawPxiWord();
stackWords = (stackWords > 96 ? 96 : stackWords);
for(u32 i = 0; i < stackWords; i++)
{
ee_printf("%08" PRIX32, recvRawPxiWord());
if((i % 6) < 5) ee_printf(" ");
}
}
}
[[noreturn]] static void exceptionHandlerEnd(void)
{
// Flush D-Cache just in case and also because the frame buffer may be cached.
flushDCache();
// Wait 2 seconds.
// If we are on New 2/3DS (LGR2) the clock may be at 804 MHz.
// If it's not at 804 MHz this will delay for 6 seconds.
const u32 multiplier = (getCfg11Regs()->socinfo & SOCINFO_LGR2 ? 3 : 1);
wait_cycles((268111856u * multiplier) * 2);
// Wait for A/B/X/Y.
while(!(REG_HID_PAD & (KEY_A | KEY_B | KEY_X | KEY_Y)));
// Trigger power off via MCU.
MCU_sysPowerOff();
// Wait for power off.
while(1) __wfi();
}
[[noreturn]] NOINLINE void __fb_assert(const char *const file, const unsigned line, const char *const cond)
{
if(prepareExceptionHandling(0, 0x7FFFFFFF))
{
ee_printf("ARM11(%" PRIu32 ") assert() called\n\n", __getCpuId());
ee_printf("%s:%u: Assertion '%s' failed.", file, line, cond);
}
prepareArm9ForPowerOff();
exceptionHandlerEnd();
}
[[noreturn]] NOINLINE void panicMsg(const char *const msg)
{
if(prepareExceptionHandling(1, 0x7FFFFFFF))
{
ee_printf("ARM11(%" PRIu32 ") panic() called\n\n", __getCpuId());
if(msg != NULL) ee_puts(msg);
}
prepareArm9ForPowerOff();
exceptionHandlerEnd();
}
[[noreturn]] NOINLINE void panic(void)
{
panicMsg(NULL);
}
// Expects the registers on the exception stack to be in the following order:
// r0-r14, pc (unmodified), CPSR, DFSR, IFSR, FAR, WFAR.
[[noreturn]] NOINLINE void guruMeditation(const u32 type, const u32 *const excFrame)
{
if(prepareExceptionHandling(2, 0x7FFFFFFF))
{
static const char *const excStrs[3] = {"undefined instruction", "prefetch abort", "data abort"};
ee_printf("ARM11(%" PRIu32 ") exception %s\n\n", __getCpuId(), excStrs[type]);
printException(type, excFrame, false);
}
prepareArm9ForPowerOff();
exceptionHandlerEnd();
}
[[noreturn]] NOINLINE void arm9FatalError(const u32 type)
{
const u32 fatalType = type & 3u;
if(prepareExceptionHandling(fatalType, 0x7FE007FE))
{
const u32 excType = type>>8;
static const char *const errors[3] = {"assert() called", "panic() called", "exception"};
static const char *const excStrs[3] = {"undefined instruction", "prefetch abort", "data abort"};
ee_printf("ARM9 %s %s\n\n", errors[fatalType], (fatalType == 2 ? excStrs[excType] : ""));
if(fatalType == 0) // assert().
{
char assertStr[256];
recvRawPxiData(assertStr, 255, true);
assertStr[255] = '\0';
ee_printf("%s:%" PRIu32 ": ", assertStr, recvRawPxiWord());
recvRawPxiData(assertStr, 255, true);
ee_printf("Assertion '%s' failed.", assertStr);
}
else if(fatalType == 1) // pnaic().
{
char panicStr[256];
recvRawPxiData(panicStr, 255, true);
panicStr[255] = '\0';
if(*panicStr != '\0')
ee_puts(panicStr);
}
else // fatalType >= 2. Exception.
{
u32 excFrame[17];
recvRawPxiData(excFrame, sizeof(excFrame), false);
// GCC for some reason assumes parts of the array can be uninitialized here when they are in fact not.
// Beware if excFrame is pre-initialized with {0} it will replace the CPSR print with 0.
//#pragma GCC diagnostic push
//#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
printException(excType, excFrame, true);
//#pragma GCC diagnostic pop
}
}
exceptionHandlerEnd();
}
// ---------------------------------------------------------------- //
#ifndef NDEBUG
// Needs to be marked as used to work with LTO.
// The used attribute also overrides the newlib symbol.
// This is for debugging purposes only. For security this value needs to be random!
__attribute__((used)) uintptr_t __stack_chk_guard = 0x3393E532;
// Needs to be marked as noinline and used to work with LTO.
// The used attribute also overrides the newlib symbol.
// Combine -fstack-protector-all with -fno-inline to get the most effective detection.
[[noreturn]] __attribute__((noinline, used)) void __stack_chk_fail(void)
{
panicMsg("Stack smash!");
}
// Add "-Wl,-wrap=malloc,-wrap=calloc,-wrap=free" to LDFLAGS to enable the heap check.
static const u32 __heap_chk_guard[4] = {0x8B98ADAA, 0xE98855D2, 0x3C482F85, 0x0F872B4C};
void* __real_malloc(size_t size);
void __real_free(void *ptr);
void* __wrap_malloc(size_t size)
{
// Check if size + guard data overflows.
size_t guardedSize;
const size_t guardSize = sizeof(__heap_chk_guard);
if(__builtin_add_overflow(size, guardSize * 2, &guardedSize)) return NULL;
// Allocate memory large enough to hold size + guard data.
u8 *const buf = __real_malloc(guardedSize);
if(buf == NULL) return NULL;
// Copy guard data at start and end of buffer.
memcpy(buf, &size, sizeof(size_t));
memcpy(buf + sizeof(size_t), (u8*)__heap_chk_guard + sizeof(size_t), guardSize - sizeof(size_t));
memcpy(buf + guardSize + size, __heap_chk_guard, guardSize);
return buf + guardSize;
}
void* __wrap_calloc(size_t num, size_t size)
{
// Check if num * size overflows.
size_t allocSize;
if(__builtin_mul_overflow(num, size, &allocSize)) return NULL;
// Allocate buffer.
void *const buf = __wrap_malloc(allocSize);
if(buf == NULL) return NULL;
// Clear buffer.
memset(buf, 0, allocSize);
return buf;
}
void __wrap_free(void *ptr)
{
// Check for NULL.
u8 *const ptr8 = ptr;
if(ptr8 == NULL) return;
// Check if guard data at buffer start got overwritten.
const size_t guardSize = sizeof(__heap_chk_guard);
if(memcmp(ptr8 - (guardSize - sizeof(size_t)), (u8*)__heap_chk_guard + sizeof(size_t), guardSize - sizeof(size_t)) != 0)
panicMsg("Heap underflow!");
// Copy the stored real buffer size.
size_t size;
memcpy(&size, ptr8 - guardSize, sizeof(size_t));
// Check if the buffer size makes sense.
// Important! Adjust the size check if needed.
// 1024u * 512 is roughly ok for AXIWRAM.
if(size > (1024u * 512) || memcmp(ptr8 + size, __heap_chk_guard, guardSize) != 0)
panicMsg("Heap overflow!");
__real_free(ptr8 - guardSize);
}
#endif